

NORMALIZATION & TYPES OF

NORMALIZATION

1) DEFINE

NORMALIZATION
Normalization can be defined as :-

▪ A process of organizing the data in database to avoid data redundancy,

insertion anomaly, update anomaly & deletion anomaly.

• A process of organizing data into tables in such a way that the results

of using the database are always unambiguous and as intended. Such

normalization is intrinsic to relational database theory. It may have the

effect of duplicating data within the database and often results in the

creation of additional tables.

Types of

normalization

▪ First Normal Form (1NF)

▪ Second Normal Form (2NF)

▪ Third Normal Form (3NF)

▪ Boyce-Codd Normal Form (BCNF)

▪ Fourth Normal Form (4NF)

▪ Fifth Normal Form (5NF)

First Normal Form (1NF)

First normal form enforces these criteria:

� Eliminate repeating groups in individual tables.

� Create a separate table for each set of related

data.

� Identify each set of related data with a primary

key

First Normal Form

Table_Product

Product Id Colour Price

1 Black, red Rs.210

2 Green Rs.150

3 Red Rs. 110

4 Green, blue Rs.260

5 Black Rs.100

This table is not in first

normal form because the

“Colour” column contains

multiple Values.

After decomposing it into first

normal form it looks like:

Product_id Price

1 Rs.210

2 Rs.150

3 Rs. 110

4 Rs.260

5 Rs.100

Product_id Colour

1 Black

1 Red

2 Green

3 Red

4 Green

4 Blue

5 Black

Second Normal Form (2NF)

A table is said to be in 2NF if both the following conditions hold:

� Table is in 1NF (First normal form)

� No non-prime attribute is dependent on the proper subset of any

candidate key of table.

An attribute that is not part of any candidate key is known as non-prime

attribute.

SECOND NORMAL FORM

Table purchase detail

Customer_id Store_id Location

1 1 Patna

1 3 Noida

2 1 Patna

3 2 Delhi

4 3 Noida

� This table has a composite

primary key i.e. customer id,

store id. The non key attribute is

location. In this case location

depends on store id, which is

part of the primary key.

After decomposing it into second

normal form it looks like:

Table Purchase

Customer_id Store_id

1 1

1 3

2 1

3 2

4 3

Table Store

Store_id Location

1 Patna

2 Delhi

3 Noida

Third Normal Form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

� Table must be in 2NF

� Transitive functional dependency of non-prime attribute on any super key

should be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for

each functional dependency X-> Y at least one of the following conditions hold:

� X is a super key of table

� Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

THIRD NORMAL

FORM

Table Student Details

Book_id Genre_id Genre

type

Price

1 1 Fiction 100

2 2 Sports 110

3 1 Fiction 120

4 3 Travel 130

5 2 sports 140

� In the table, book_id determines

genre_id and genre_id determines

genre type. Therefore book_idd

determines genre type via

genre_id and we have transitive

functional dependency.

After decomposing it into third

normal form it looks like:

TABLE BOOK

Book_id Genre_id Price

1 1 100

2 2 110

3 1 120

4 3 130

5 2 140

TABLE GENRE

Genre_id Genre type

1 Fiction

2 Sports

3 Travel

Boyce-Codd Normal Form (BCNF)

� It is an advance version of 3NF that’s why it is also referred as 3.5NF.

BCNF is stricter than 3NF. A table complies with BCNF if it is in 3NF and for

every functional dependency X->Y, X should be the super key of the table.

Boyce-Codd Normal Form

Student Course Teacher

Aman DBMS AYUSH

Aditya DBMS RAJ

Abhinav E-COMM RAHUL

Aman E-COMM RAHUL

abhinav DBMS RAJ

� KEY: {Student, Course}

� Functional dependency

{student, course} -> Teacher

Teacher-> Course

� Problem: teacher is not

superkey but determines course.

After decomposing it into Boyce-

Codd normal form it looks like:

Student Course

Aman DBMS

Aditya DBMS

Abhinav E-COMM

Aman E-COMM

Abhinav DBMS

Course Teacher

DBMS AYUSH

DBMS RAJ

E-COMM RAHUL

Fourth Normal Form (4NF)

� Fourth normal form (4NF) is a level of database normalization where

there are no non-trivial multivalued dependencies other than a candidate

key.

It builds on the first three normal forms (1NF, 2NF and 3NF) and the Boyce-

Codd Normal Form (BCNF). It states that, in addition to a database

meeting the requirements of BCNF, it must not contain more than one

multivalued dependency.

FOURTH NORMAL

FORM

Student Major Hobby

Aman Management Football

Aman Management Cricket

Raj Management Football

Raj Medical Football

Ram Management Cricket

Aditya Btech Football

Abhinav Btech Cricket

� Key: {students, major,

hobby}

� MVD: ->-> Major, hobby

After decomposing it into fourth

normal form it looks like:

Student Major

Aman Management

Raj Management

Raj Medical

Ram Management

Aditya Btech

Abhinav Btech

Student Hobby

Aman Football

Aman Cricket

Raj Football

Ram Cricket

Aditya Football

Abhinav Cricket

Fifth Normal Form (5NF)

A database is said to be in 5NF, if and only if,

� It's in 4NF.

� If we can decompose table further to eliminate redundancy and anomaly,

and when we re-join the decomposed tables by means of candidate keys, we

should not be losing the original data or any new record set should not arise. In

simple words, joining two or more decomposed table should not lose records

nor create new records.

FIFTH NORMAL

FORM

Seller Company Product

Aman Coca cola

company

Thumps Up

Aditya Unilever Ponds

Aditya Unilever Axe

Aditya Uniliver Lakme

Abhinav P&G Vicks

Abhinav Pepsico Pepsi

� Key: {seller, company, product}

� MVD: Seller ->-> Company,

product Product is related to

company.

After decomposing it into fifth

normal form it looks like:

Continued in next slide…

Seller Product

Aman Thumps Up

Aditya Ponds

Aditya Axe

Aditya Lakme

Abhinav Vicks

Abhinav Pepsi

Seller Company

Aman Coca cola

company

Aditya Unilever

Abhinav P&G

Abhinav Pepsico

Company Product

Coca cola company Thumps Up

Unilever Ponds

Unilever Axe

Unilever Lakme

Pepsico Pepsi

P&G Vicks

Normalization in DBMS: 1NF, 2NF, 3NF and BCNF in Database

Normalization is a process of organizing the data in database to avoid data redundancy, insertion anomaly, update anomaly & deletion anomaly.

Let’s discuss about anomalies first then we will discuss normal forms with examples.

Anomalies in DBMS

There are three types of anomalies that occur when the database is not normalized. These are – Insertion, update and deletion anomaly. Let’s take an

example to understand this.

Example: Suppose a manufacturing company stores the employee details in a table named employee that has four attributes: emp_id for storing

employee’s id, emp_name for storing employee’s name, emp_address for storing employee’s address and emp_dept for storing the department details

in which the employee works. At some point of time the table looks like this:

emp_id emp_name emp_address emp_dept

101 Rick Delhi D001

101 Rick Delhi D002

123 Maggie Agra D890

166 Glenn Chennai D900

166 Glenn Chennai D004

The above table is not normalized. We will see the problems that we face when a table is not normalized.

Update anomaly: In the above table we have two rows for employee Rick as he belongs to two departments of the company. If we want to update

the address of Rick then we have to update the same in two rows or the data will become inconsistent. If somehow, the correct address gets updated

in one department but not in other then as per the database, Rick would be having two different addresses, which is not correct and would lead to

inconsistent data.

Insert anomaly: Suppose a new employee joins the company, who is under training and currently not assigned to any department then we would not

be able to insert the data into the table if emp_dept field doesn’t allow nulls.

Delete anomaly: Suppose, if at a point of time the company closes the department D890 then deleting the rows that are having emp_dept as D890

would also delete the information of employee Maggie since she is assigned only to this department.

To overcome these anomalies we need to normalize the data. In the next section we will discuss about normalization.

Normalization

Here are the most commonly used normal forms:

 First normal form(1NF)

 Second normal form(2NF)

 Third normal form(3NF)

 Boyce & Codd normal form (BCNF)

First normal form (1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values. It should hold only atomic values.

Example: Suppose a company wants to store the names and contact details of its employees. It creates a table that looks like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur

8812121212

9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore

9990000123

8123450987

Two employees (Jon & Lester) are having two mobile numbers so the company stored them in the same field as you can see in the table above.

This table is not in 1NF as the rule says “each attribute of a table must have atomic (single) values”, the emp_mobile values for employees Jon &

Lester violates that rule.

To make the table complies with 1NF we should have the data like this:

emp_id emp_name emp_address emp_mobile

101 Herschel New Delhi 8912312390

102 Jon Kanpur 8812121212

102 Jon Kanpur 9900012222

103 Ron Chennai 7778881212

104 Lester Bangalore 9990000123

104 Lester Bangalore 8123450987

Second normal form (2NF)

A table is said to be in 2NF if both the following conditions hold:

 Table is in 1NF (First normal form)

 No non-prime attribute is dependent on the proper subset of any candidate key of table.

An attribute that is not part of any candidate key is known as non-prime attribute.

Example: Suppose a school wants to store the data of teachers and the subjects they teach. They create a table that looks like this: Since a teacher can

teach more than one subjects, the table can have multiple rows for a same teacher.

teacher_id Subject teacher_age

111 Maths 38

111 Physics 38

222 Biology 38

333 Physics 40

333 Chemistry 40

Candidate Keys: {teacher_id, subject}

Non prime attribute: teacher_age

The table is in 1 NF because each attribute has atomic values. However, it is not in 2NF because non prime attribute teacher_age is dependent on

teacher_id alone which is a proper subset of candidate key. This violates the rule for 2NF as the rule says “no non-prime attribute is dependent on the

proper subset of any candidate key of the table”.

To make the table complies with 2NF we can break it in two tables like this:

teacher_details table:

teacher_id teacher_age

111 38

222 38

333 40

teacher_subject table:

teacher_id subject

111 Maths

111 Physics

222 Biology

333 Physics

333 Chemistry

Now the tables comply with Second normal form (2NF).

Third Normal form (3NF)

A table design is said to be in 3NF if both the following conditions hold:

 Table must be in 2NF

 Transitive functional dependency of non-prime attribute on any super key should be removed.

An attribute that is not part of any candidate key is known as non-prime attribute.

https://beginnersbook.com/2015/04/transitive-dependency-in-dbms/
https://beginnersbook.com/2015/04/candidate-key-in-dbms/

In other words 3NF can be explained like this: A table is in 3NF if it is in 2NF and for each functional dependency X-> Y at least one of the

following conditions hold:

 X is a super key of table

 Y is a prime attribute of table

An attribute that is a part of one of the candidate keys is known as prime attribute.

Example: Suppose a company wants to store the complete address of each employee, they create a table named employee_details that looks like this:

emp_id emp_name emp_zip emp_state emp_city emp_district

1001 John 282005 UP Agra Dayal Bagh

1002 Ajeet 222008 TN Chennai M-City

1006 Lora 282007 TN Chennai Urrapakkam

1101 Lilly 292008 UK Pauri Bhagwan

https://beginnersbook.com/2015/04/super-key-in-dbms/

1201 Steve 222999 MP Gwalior Ratan

Super keys: {emp_id}, {emp_id, emp_name}, {emp_id, emp_name, emp_zip}…so on

Candidate Keys: {emp_id}

Non-prime attributes: all attributes except emp_id are non-prime as they are not part of any candidate keys.

Here, emp_state, emp_city & emp_district dependent on emp_zip. And, emp_zip is dependent on emp_id that makes non-prime attributes

(emp_state, emp_city & emp_district) transitively dependent on super key (emp_id). This violates the rule of 3NF.

To make this table complies with 3NF we have to break the table into two tables to remove the transitive dependency:

employee table:

emp_id emp_name emp_zip

1001 John 282005

1002 Ajeet 222008

1006 Lora 282007

1101 Lilly 292008

1201 Steve 222999

employee_zip table:

emp_zip emp_state emp_city emp_district

282005 UP Agra Dayal Bagh

222008 TN Chennai M-City

282007 TN Chennai Urrapakkam

292008 UK Pauri Bhagwan

222999 MP Gwalior Ratan

Boyce Codd normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 3NF. A table complies with BCNF if it is in 3NF and for

every functional dependency X->Y, X should be the super key of the table.

Example: Suppose there is a company wherein employees work in more than one department. They store the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001 Austrian Production and planning D001 200

1001 Austrian stores D001 250

1002 American design and technical support D134 100

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

1002 American Purchasing department D134 600

Functional dependencies in the table above:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production and planning D001 200

stores D001 250

design and technical support D134 100

Purchasing department D134 600

emp_dept_mapping table:

emp_id emp_dept

1001 Production and planning

1001 stores

1002 design and technical support

1002 Purchasing department

Functional dependencies:

emp_id -> emp_nationality

emp_dept -> {dept_type, dept_no_of_emp}

Candidate keys:

For first table: emp_id

For second table: emp_dept

For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

Fourth normal form (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then the relation will be a multi-valued dependency.

Example

STUDENT

STU_ID COURSE HOBBY

21 Computer Dancing

21 Math Singing

34 Chemistry Dancing

74 Biology Cricket

59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent entity. Hence, there is no relationship between

COURSE and HOBBY.

In the STUDENT relation, a student with STU_ID, 21 contains two courses, Computer and Math and two hobbies, Dancing and Singing.

So there is a Multi-valued dependency on STU_ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE

STU_ID COURSE

21 Computer

21 Math

34 Chemistry

74 Biology

59 Physics

STUDENT_HOBBY

STU_ID HOBBY

21 Dancing

21 Singing

34 Dancing

74 Cricket

59 Hockey

Fifth normal form (5NF)

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining should be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order to avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

Example

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't take Math class for Semester 2. In this case,

combination of all these fields required to identify a valid data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who will be taking that subject so we leave

Lecturer and Subject as NULL. But all three columns together acts as a primary key, so we can't leave other two columns blank.

So to make the above table into 5NF, we can decompose it into three relations P1, P2 & P3:

P1

13.9M

230

Hello Java Program for Beginners

SEMESTER SUBJECT

Semester 1 Computer

Semester 1 Math

Semester 1 Chemistry

Semester 2 Math

P2

SUBJECT LECTURER SEMESTER

Computer Anshika Semester 1

Computer John Semester 1

Math John Semester 1

Math Akash Semester 2

Chemistry Praveen Semester 1

SUBJECT LECTURER

Computer Anshika

Computer John

Math John

Math Akash

Chemistry Praveen

P3

SEMSTER LECTURER

Semester 1 Anshika

Semester 1 John

Semester 1 John

Semester 2 Akash

Semester 1 Praveen

